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Abstract

We propose a new method to find modes based on active information.
We develop an algorithm called active information mode hunting (AIMH)
that, when applied to the whole space, will say whether there are any
modes present and where they are. We show AIMH is consistent and, given
that information increases where probability decreases, it helps to over-
come issues with the curse of dimensionality. The AIMH also reduces the
dimensionality with no resource to principal components. We illustrate the
method in three ways: with a theoretical example (showing how it performs
better than other mode hunting strategies), a real dataset business application,
and a simulation.
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1 INTRODUCTION
Finding maxima has been closely related to the development of science. In statistics, modes have always been central to
the theory. Modes are defined as maximum accumulation points (regions) in discrete (continuous) spaces. In turn, modes
have paved the way to introduce related concepts in data structures such as bumps, components, clusters, or classes,
among others. However, chasing modes has proven to be extremely difficult in large and even not-so-large dimensions,
so huge amounts of statistical research are devoted to improve already existing methods or developing new ones to allow
a more efficient way to tackle the problem.1-4 In this paper, we are primarily concerned with the particular case of mode
hunting. Thus, we propose here Active Information Mode Hunting (AIMH), a multivariate algorithm to chase modes
based on information theory.

Mode hunting based on parametric methods does not work well in general. The few cases where it works are only in low
dimensions. Most of these methods infer the distribution of a sample, say through a goodness of fit test, so that through
the distribution itself, we determine the position of its modes. For instance, if we find that our sample is distributed as
a  (𝜇, 𝜎2), we will know that there is a bump at 𝜇. Thus, it is not difficult to see how big data and large dimensionality
will challenge most of these approaches. It is not uncommon for data in large dimensions to be multimodal; this explains
the growing interest on estimating, in large dimensions, conditional densities f ( y|x), where y is the outcome and x is
the input, instead of the mere regression E(Y|x) —multimodality makes conditional expectation almost uninformative.5

For this reason, nonparametric approaches have become popular, even though these are also affected by the curse of
dimensionality, among other problems in large dimensions. Our proposed strategy in this paper takes elements from both.
The intuition is as follows: like a goodness of fit test, we will compare the empirical distribution to a uniform one; if the
empirical distribution does not come from the uniform, there is at least a mode present. Like nonparametric methods,
an algorithm then will identify locations of the particular modes. In fact, as we will see in Section 3, the algorithm we
present here, called AIMH, will determine whether there are any bumps present and where they are.
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When the number of dimensions is large ( p ≫ 0), it is usually the case that parsimony is important in the sense
that most of the interest is reduced to a few p′ variables such that 0 < p′ ≪ p. The usual strategy used to reduce the
dimensionality of the original information is to apply principal components,6 but this kind of reduction presents several
problems in that the response might be associated to the zeroed dimensions.7,8 The AIMH reduces the dimensionality
avoiding the use of principal components.

Maybe the bes-known bump hunting algorithm is the Patient Rule Induction Method (PRIM).9 The PRIM is a greedy
algorithm made of three stages: peeling, pasting, and covering. The most important to understand here is peeling. The
data lives in a p-dimensional box B and, among a set  of elegible subboxes, we are going to remove the subbox b∗ that
maximizes the probability of B − b, for b ∈ . The boxes in  are the ones at the “extreme” of each dimension j, ie, in each
dimension, we consider b𝑗− = {x ∶ xj < xj (𝛼)} and b𝑗+ = {x ∶ xj > xj (1− 𝛼)}, where xj (𝛼) and xj (1− 𝛼) are, respectively, the
𝛼 quantiles and (1 − 𝛼) quantiles. Then,  is made of 2p boxes. Once we have B − b∗, we iterate the same procedure but
now replacing B by B − b∗ and choosing the subboxes among the ones defined by the 𝛼 and (1 − 𝛼) quantiles in B − b∗.
We iterate the process until the peeled box B∗ reaches some probability threshold 𝛽. At the end, according to PRIM, there
is a bump in B∗.

However, PRIM has at least two limitations: it becomes computationally expensive in high dimensions and, as shown
by Polonik and Wang, it has problems in two or more dimensions because “PRIM might not be able to resolve two distinct
modes”.10 The second problem persists even when the tuning meta-parameters of the algorithm are chosen carefully. This
means that in the end, PRIM identifies as modes some things that are not modes. By contrast, as illustrated in Section 5,
with AIMH, we can find modes whenever they are present, up to the tuning of a particular parameter, and we can be sure
that it would not identify as modes anything that is not a mode.

Another algorithm for bump hunting, based on PRIM, is Local Sparse Bump Hunting (LSBH).11 In LSBH goes through a
partition in several subspaces using classification and regression trees (CART). Second, a Principal Components Analysis
(PCA) or a Sparse Principal Components Analysis (SPCA) is run inside each partition. Third, (multi)modality is tested
inside each partition. Fourth, PRIM is performed inside each of the partitions where modes were detected.

It is a good idea to make the partition of the space using CART. Nonetheless, the use of SPCA generates other com-
plications. For instance, it is well known that in regression, a SPCA on the covariates space can be misleading since it is
possible that some of the lower-variance components are more correlated to the response than the larger-variance ones.7,8

Second, in applications, more often than not, interpretation of sparse principal components SPC is not clear—beyond the
abstraction, it is not obvious at all how to interpret the response in terms of the rotated and reduced space induced by
SPC because we do not know what those variables represent in reality. Third, when bump hunting is reduced to chasing
modes by definition, there are more modes in spaces with lower variance than higher ones. To illustrate this last point,
consider the bidimensional space X = (X1,X2), where X1 ∼ N(𝜇, 1) and X2 ∼ N(𝜇, 10) and X1 is independent of X2. In
this case, the second variable has higher variance (so it would be selected by PCA), but the bump is more clearly found
in X1 precisely because of its lower variance.

The PRIM and the LSBH are bump hunting algorithms in regression settings, ie, they are both trying to maximize the
expectation of the response conditioned on a set of covariates. By contrast, our algorithm here differs from them in at least
two important ways. First, we are dealing with modes, not with general bumps; this means that our algorithm here does
not find maxima of any measure but only of frequencies. Second, our algorithm is a multivariate analysis, not a regression
one; this means that we are not fitting a model, we are not maximizing a response in terms of explanatory variables; our
goal here is more modest—to find regions with maximum frequencies in a multivariate space.

In Section 3, we introduce the algorithm AIMH formally. In Section 4, we prove that it is consistent for finding modes.
Section 5 presents some theoretical examples that illustrate its reach. Section 6 applies AIMH to a real business situation
comparing goals and pledges from Kickstarter, a reward-based crowdfunding platform that allows people to look for
funding for creative projects. Section 7 uses the fact that low probability makes for large information, so that the curse
of dimensionality in probabilistic terms can be seen also as a blessing in terms of information. Since AIMH is based on
information—actually it derives its name from a concept called active information (AI)—we proceed to explain it here in
Section 2.

2 ACTIVE INFORMATION

Following on the reasoning subjacent to the famous No-Free-Lunch theorems,12,13 active information (AI) has been intro-
duced in computer science to measure how much information is being added by the programmer in a computer search.14-16

In what remains of this section, we will introduce it in terms of mode hunting.
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Assume a sample space Ω = {1, … ,N}, with N ∈ N. The uniform distribution over Ω, by its very definition, is the
only one with total absence of modes. This simple idea can be taken to detect the existence of modes—use any of the
goodness-of-fit tests in the market and any deviation from uniformity will imply that the underlying distribution has
modes. Such a simple concept, however, would be useless if it does not say where these modes are. A way to detect their
location follows:

Denoting U as the uniform distribution, let us define

IΩ = −log U(𝜔)

as the endogenous information of the event 𝜔. Denoting now S as the empirical distribution coming from the sample,
define

IS = −log S(𝜔)

as the exogenous information of the event 𝜔. Finally, we can define the AI of the event 𝜔 as

I+ ∶= IΩ − IS = log S(𝜔)
U(𝜔)

.

With this apparatus, we propose to calculate the AI of each singleton event in Ω. Modes, whenever they are present, would
be located at events such that their AI is positive. In fact, the bigger the AI, the bigger the mode is going to be.

Here, AI is defined in dimension 1. Through a parametric approach, we could compare any p-dimensional exoge-
nous distribution against a p-dimensional uniform, but this presents a complication. In applications, even if the data is
p-dimensional, there might be an interest on finding modes in dimensions lower than p too. Thus, it would be unfeasible
to consider all the 2p − 1 possible subsets of variables (see the fourth remark at the end of Section 3). Therefore, a non-
parametric method is needed. The goal of the next section is to construct an algorithm that, through AI, would be able to
detect modes in dimensions higher than 1.

3 AIMH ALGORITHM

We mention at the beginning of the Introduction that standard parametric approaches do not use to do well when big
data and/or high dimensions are involved, so nonparametric methods are preferred when we are chasing bumps. This
is one of the main reasons to introduce algorithmic-type methods like PRIM9 or LSBH.11 In the same spirit, we present
here an algorithm we have dubbed Active Information Mode Hunting (AIMH) in which we mix the parametric idea
of a goodness-of-fit test to compare the data against a normal, with the nonparametric advantage that is offered by an
algorithmic approach.

Let us assume a p-dimensional rectangular space of finite Lebesgue measure Ip = I1 × … × Ip. Then, the r.v. with
maximum entropy is U(Ip), ie, a p-dimensional uniform distribution whose parameter is the Lebesgue measure of Ip.
Consider D ∶= {1, … , p}, and take a subset D′ ∶ = {i1, … , ip′ }, with p′ < p, then Ui1,… ,ip′ is a projection of the uniform
in p dimensions in p′ dimensions. With this, we can extend the idea of the previous section to find the p-dimensional
modes as well as the modes in the projections through Algorithm 1 in page 7.

Then, (i) is the collection of bumps in i dimensions found with this method, where i = 1… , p.
The algorithm is better understood informally in plain English:

1. Make a partition of every single dimension into subintervals.
2. Calculate the AI of each subinterval in each dimension.
3. In each dimension, keep those subintervals whose AI is bigger than some threshold b1 (in fact, this can be generalized

a little further considering different thresholds in every dimension b1i, for i from 1 to p).
4. For i ≠ j, take all the subintervals in dimensions i and j whose AI was above the threshold b1 (or b1i and b1j in the

generalization) and construct bidimensional boxes.
5. Define a threshold b2 (or b2ij) and collect the bidimensional boxes in dimensions i and j whose AI is above the threshold.
6. Construct three-dimensional cubes with the boxes whose AI was above the threshold b2 and the subintervals whose

AI was above the threshold b1.
7. Collect the cubes whose AI is above a threshold b3.
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8. Repeat recurrently the procedure adding the significative unidimensional subintervals to the significative hyper-cubes,
to form hyper-cubes with one additional dimension, either until exhaustion of dimensions or until there is a particular
number of dimensions in which no hyper-cube has AI higher than the specified threshold.

Several remarks are in order. First, in some cases, it is not necessary to measure the AI against the uniform distribution
since the background distribution is already given. In these cases, all that is needed is simply to replace U by the relevant
probability, say Q. In this case, the algorithm presented also works replacing in each dimension the marginal uniform by
the corresponding marginal distribution.

Second, we can also consider more general 𝜎-finite spaces, replacing the endogenous distribution by a distribution of
interest. If the due knowledge about the moments is given, this endogenous distribution can take the form of a maximum
entropy distribution.17 In reality, however, this is only of theoretical interest since in applications, all the spaces will be
effectively finite, therefore uniformity will do as background in more computational implementations.

Third, the algorithm depends on the choice of the meta-parameters ri (the number of intervals in the partition per
dimension) and bi, for i = 1, … , p. Since in large dimensions, most of the variables are usually noisy, it is expected of
Algorithm 1 to diminish the size of the space considered at a fast speed (see Section 8). In fact, the number of dimensions
considered in the end is bounded by how many dimensions were selected in the first stage, in the unidimensional analysis.
If AIMH chose p′ dimensions in the first stage, the algorithm is not going beyond a p′-dimensional analysis. Thus, b1 will
also affect how many steps the algorithm is going to take.

Fourth, comparing AIMH to subsets regression might be tempting, but it is misleading in several ways. (i) We are not
dealing here with regression but with a more mundane multivariate analysis. (ii) The final analysis does not involve 2p − 1
different “models”. In fact, consider that for i = 1, … , p, there are

(
p
i

)
possible analyses involving exactly i dimensions.
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Nonetheless, as stated in the previous remark, it uses to be the case that most of the variables are noisy. Therefore, calling
p(i) the number of variables in i dimensions with a mode above the threshold, we have that p(i) ≪

(
p
i

)
, so that the number

of analyses considered in the end is much less than 2p − 1.

4 CONSISTENCY

In this section, we prove that Algorithm 1 in Section 3 estimates consistently the modes of the population distribution
function. Without loss of generality, we assume that the underlying space is [0, 1]p, and, as a simplifying assumption, we
make a partition of every dimension in the same amount of subintervals, ie, r1 = · · · = rp = r.

Let us define first a more general version of AI with respect to a different underlying distribution:

Definition 1 (AI under X with respect to Y ).
Let X and Y be continuous r.v.'s over the same sample space Ω, and let A in Ω be a Borel set such that PY(A) > 0, then

IX|Y
+ (A) = log PX (A)

PY (A)
.

With this definition, we prove the following result, from which consistency is derived:

Theorem 1. Let Fn be an empirical distribution function coming from the continuous distribution F over the sample
space [0, 1]. The AI under Fn with respect to U consistently estimates the AI under F with respect to U

IFn|U
+ (A)

n→∞
−−→ IF|U

+ (A), a.s. (1)

To prove Theorem 1, for a vector x = (x1, … , xp) ⊂ [0, 1]p, we define first [0, x]p as the p-dimensional box [0, x1] × · · · ×
[0, xp]. We have the following two lemmas:

Lemma 1. Let Fn be an empirical distribution function taken from a continuous distribution F over the sample space
[0, 1], then

|||IFn|F
+ ([0, x]p)|||

n→∞
−−→ 0, a.s.

Proof. By the Glivenko-Cantelli theorem, Fn(x) converges to F(x), with probability one, for every x ∈ [0, 1]p. Since
FU(x) = x1 … xp, the quotient Fn(x)∕FU(x) is always defined for x ∈ (0, 1]p. An application of the continuous
mapping theorem completes the proof.

The AI satisfies this very convenient property:

Lemma 2. Let X,Y, and Z be r.v. in Ω. Let A be a measurable set such that FY(A) and FZ(A) are not zero. Then,

IX|Z
+ (A) = IX|Y

+ (A) + IY |Z
+ (A).

Proof.

IF|H
+ (A) = log PX (A)

PZ(A)
= log PX (A)

PY (A)
+ log PY (A)

PZ(A)
= IF|G

+ (A) + IG|H
+ (A).

Theorem 1 follows now easily from the previous two lemmas:

Proof of Theorem 1. Let Xn be the r.v. associated to Fn, X the r.v. associated to the limiting distribution F, and U a
uniform in [0, 1]. By Lemma 2, we obtain for A = [0, x]p that

IFn|U
+ (A) = IFn|F

+ (A) + IF|U
+ (A).
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By Lemma 1, as n → ∞, we obtain then that IFn|U
+ (A) → IF|U

+ (A). Since the class {[0, x]p ∶ x ∈ [0, 1]p} is a 𝜋-system
that generates the Borel 𝜎-algebra, the monotone class theorem (Dynkin's theorem) generalizes the result to every
Borel set A such that F(A) ≠ 0 ≠ |A|.

5 THE BLESSING OF DIMENSIONALITY

As it is well known, as long as the number of dimensions is increasing and the number of observations is fixed, the curse of
dimensionality will make it difficult to find uniform distributions (see, eg, pages 22 to 27 in the book of Hastie et al18). The
easy way to see this is to consider a discrete uniform r.v. with parameter N in a sample space Ω. Then, the random vector
whose components are iid uniform r.v. living each in Ω lives itself in the Cartesian product Ω × … × Ω (p times), so that
each point has probability N −p. Thus, most, if not all, learning methods—and this is not restricted to bump hunting— will
fail to detect uniform distributions in high dimensions, unless the sample size is growing exponentially with the number
of dimensions.

On the other hand, this exact problem serves well in terms of information—lower probability always makes for
logarithmically higher information. We can state formally the previous assertion in terms of the following proposition:

Proposition 1. When we are considering the AI of a random vector whose components are iid uniform random variables
distributed uniformly in a sample space Ω, the AI of the random vector becomes a linear function of p with slope −IΩ and
intercept −IS.

Proof.

I+ = IΩ×· · ·×Ω − IS

= −log N−p − IS

= −pIΩ − IS.

6 EXAMPLES

In this section, we examine three examples. The first illustrates in one dimension how our algorithm works, the last two
explain in two dimensions the workings of the algorithm. The third, in particular, is very interesting since it shows its
superiority to PRIM in that it finds bumps that PRIM is not able to detect.

A nice feature of Algorithm AIMH is that the AI of each box can be calculated exactly due to the fact that we are
using the probability induced by the empirical distribution and the uniform one. Or in the following examples, we can
limit ourselves to compare the AI in the relevant boxes based on the probabilities of the regions under the parametrical
endogenous and exogenous distributions. Therefore, no simulations are needed.

6.1 Normal of low variance N(0, 10)
In this example, we examine the AI in an interval centered around the mean.

Let X ∼ N(0, 10) restricted to Ω = [−8.5, 8.5]. Call A = [− .5, .5]. Thus, P[X ∈ A] = 0.0659. From here, we can
calculate the AI of the event A as follows:

I+(A) ≈ log21.1203
≈ 0.1638.

Then, for r = 1∕17 and any b > .163 (a very small bound!), our algorithm does conclude that there is no bump in A.
When we realize that P[X ∈ A] and P[U ∈ A] are pretty close (0.0659 and 0.0526, respectively), it does not look that
surprising. However, if we are sure that there is a mode (like in this case), we can always lower our bound. In this case,
b = 0.16 will find a bump for the interval A.
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This example shows how the process works in one dimension: of all the possible subintervals, we consider only the
ones in which the AI has more bits than b1.

6.2 Bivariate normal N((0, 0), I)
Consider Z ∼ N((0, 0), I), with marginals X and Y. Call A = [− .5, .5]. Then,

P(X ∈ A) = P(Y ∈ A) ≈ 0.3829.

Considering again the interval Ω = [−8.5, 8.5] in each dimension, we have that

I+(A) = log2(.3829 × 17)
= log2(6.5093)
= 2.7.

Therefore, if our b1 > 2.5, then the interval A in each dimension is collected.
Then, we make the Cartesian product A × A and calculate its AI

I+(A × A) ≈ log2(0.1444 × 289)
≈ log2(41.73)
≈ 5.38.

This example illustrates how to apply the algorithm when p = 2. It reveals the nice feature of Algorithm 1 that it does
not even need to consider a whole dimension but only the portion in each dimension that if finds relevant. That is why
we only consider the subintervals centered around the mean to construct the boxes in dimension 2 because only those
had information bigger than 2.5.

The example also illustrates the importance of considering an algorithmic method, since choosing first all subintervals
in every dimension (which in this example amounts to one subinterval in each dimension) allows us to go in a second
step to make boxes to look at the AI in them.

6.3 Bivariate mixture of normals
Consider two bivariate random vectors X ∼ N((−3, 0), 1

4
I) and Y ∼ N((3, 0), 1

4
I) with distributions fX and fY, respectively.

Consider the new random vector Z with density

𝑓Z = 1
2
𝑓X + 1

2
𝑓Y.

Thus, each marginal density of Z1 is given by 𝑓Z1 =
1
2
𝑓X1 +

1
2
𝑓Y1 and the marginal Z2 ∼ N(0, 1∕4). We also consider the

space Ω = [−8.5, 8.5] in the first axis and [ − 4.5, 4.5] in the second one.
Then, partitioning each dimension into intervals of length one (centered around every integer) and taking b1 = 2.6,

we obtain

P(Z1 ∈ [−3.5,−2.5]) = 0.5(0.6827) + 0.5P(Y1 ∈ [−3.5,−2.5])
≈ 0.5(0..6827) + 𝜀

≈ 0.3413 + 𝜀

P(Z1 ∈ [2.5, 3.5]) ≈ 0.3413 + 𝜀.

For P(Z2 ∈ [− .5, .5]) ≈ 0.6827.
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The AI of these intervals is as follows:

IZ1
+ ([2.5, 3.5]) ≈ log2(0.3413 × 19)

≈ log26.48
≈ 2.69.

IZ2
+ ([−0.5, 0.5]) ≈ log2(0.6827 × 9)

≈ log26.14
≈ 2.61.

No other intervals have AI bigger than 2.6. Therefore, in Z1, we take the intervals [ −3.5, 2.5] and [2.5, 3.5]; in Z2, we
take the interval [ −0.5, 0.5].

Having done this, we now consider the AI inside the Cartesian products A = [−3.5, −2.5] × [ −0.5, 0.5] and B =
[2.5, 3.5] × [ −0.5, 0.5].

I+(A) = I+(B) ≈ log2(0.4577 × 171)
≈ 6.29

This example is interesting and important. Polonik and Wang10 illustrated through some simulations the incapacity of
PRIM in two or more dimensions to differentiate the two picks of a bimodal symmetric mixture of two normals; PRIM
finds a single region containing the two bumps and the valley between them (see figure 3 in the work of Polonik and
Wang10). Our example has the same characteristics as the distribution considered in the work of Polonik and Wang,10 and
shows that, given an adequate tuning of the parameters, AI is able to differentiate the two picks through two different
boxes. In fact, in general, AI is able to find as many modes as there are present, provided the right choice of the parameters.

As in the previous example, this one illustrates again the importance of increasing through an algorithm the dimension
of the boxes that are relevant in terms of AI.

7 REAL DATA ILLUSTRATION: KICKSTARTER PLEDGES AND GOALS

To further illustrate our mode hunting method, we have used Pledge and Goal data from Kickstarter. Kickstarter is a
reward-based crowdfunding platform that allows people to look for funding for creative projects. For these projects, cre-
ators choose one of the 15 different categories, a short description, a title, a duration of up to 60 days, a location, a funding
goal, and a set of rewards for different contribution levels.

The funding goal is the amount of money that the project seeks to raise to be able to complete the project and fulfill
the rewards, whereas individual pledges to any given project may range between $1 and $10 000. The funding for projects
depends on its ability to raise enough pledges to meet the funding goal, if the goal is met, the project receives the complete
pledged amount after platform fees that range between 8% and 10%; if the project does not meet the funding goal, it
receives nothing and no fees are charged.

Since the platform's launch in April 2009, and as of February 2018, 14 million people have backed a project,
$3.5 billion has been pledged, and 139 205 projects have been successfully funded. The most successful projects, as of
February 2018, include Exploding Kittens, a project for a card game, which had 219 382 backers, and Pebble Time, a project
for a smartwatch, which raised $20 338 986.

Multiple studies for the success of Kickstarter campaigns can be found in the literature19 where Lamidi analyzed 41 965
projects from 2009 to 2011 using 17 features. Lamidi's analyses conclude that a Random Forest was a superior approach
than a k-Nearest Neighbor algorithm or a Logistic Regression to predict a projects success, with an accuracy of 68% com-
pared to 63.3% and 66.42%, respectively. Barbi and Bigelli20 evaluate the success of Kickstarter projects in and outside the
United States, they conclude that drivers of success include a smaller funding goal, a shorter project duration, a higher
number of reward levels, and the presence of a video. Kaur and Gera21 evaluate the effects of social media connectivity
on the success of Kickstarter projects and propose a Logistic Regression model that predicts project success with a 76.7%
accuracy, and state that the success of a campaign largely depends on the networking skills and efforts of the creator.

Zvilichovsky et al22 evaluate the Making-the-product-happen effect, in which consumers increase their support for a
project when they believe that it is crucial for the product's creation, and provide analysis from over 200 000 Kickstarter
projects, from which 33% of all successful campaigns hinge on the support of less than 4 backers. As such, it is to be
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FIGURE 1 Kickstarter projects with both a goal and a pledge amount of up to $100 000 [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 2 One-dimensional frequencies for the goal and pledge dimensions for projects with both a goal and a pledge amount of up to
$100 000 [Colour figure can be viewed at wileyonlinelibrary.com]

expected that many projects have pledges that are very close to the project's goal. Kuppuswamy and Bayus23 study the
dynamics of a project's support over time and conclude that people pledge support for Kickstarter projects when they
believe that their contribution will make an impact, and as such predict the support increases as the pledges reaches the
project's goal and decreases once it has been met. According to these conclusions, it is expected for there to be modes with
pledges right above the projects' goals.

Our analysis uses the projects from the platform's launch through January 2nd 2018 and of these 378 661 projects, we
focus on the 311 605 where there were actually funds pledged and both the project's goal and funding were up to $100 000,
shown in Figure 1 with their respective frequencies for the goal and pledge dimensions shown in Figure 2.

In this example when we have initially taken b1 = 3 and r = 1000, with these parameters, we have found 32 modes
across the goal axis, as shown in Figure 3; and 22 modes across the Pledge axis, as shown in Figure 4. Out of the modes
in the goal axis, eight are located under the $1000, 23 are under $10 000; whereas there are also modes within $100 of
the $15 000, $20 000, $25 000,$30 000, $35 000, $40 000, $50 000, and $100 000 goals. As such, taking only the Goal as a

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 3 One-dimensional modes for the goal dimension for projects with both a goal and a pledge amount of up to $100 000 using a
b1 = 3 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 One-dimensional modes for the pledge dimension for projects with both a goal and a pledge amount of up to $100 000 using a
b1 = 3 [Colour figure can be viewed at wileyonlinelibrary.com]

decision making variable, it may be desirable for project creators to select a goal that is not in these modes and as such
would not compete within a possibly saturated goal.

The modes in the Pledge axis are all under $3100, with modes in every box under $1800, and modes within $100 of
$2100, $2200, $2600, and $3100; this should be sobering information for project creators as it shows how pledges cluster
at lower pledge amounts.

We have also taken b1 = 4 and b1 = 5, with b1 = 4, we have found 19 modes across the goal axis, as shown in Figure 5;
and 10 modes across the Pledge axis, as shown in Figure 6. In this case, out of the modes in the goal axis, four are located
under the $1000, 14 are under $10 000; whereas there are also modes within $100 of the $15 000, $20 000, $25 000, $30 000,
and $50 000 goals. The modes in the Pledge axis are all under $1100, with modes in every box under $900, as well as modes
within $100 of $1100. With b1 = 5, we have found nine modes across the goal axis, as shown in Figure 7; and four modes
across the Pledge axis, as shown in Figure 8. In this case, out of the modes in the goal axis, four are located within $100
of the $500, $1000, $2000, $2500, $3000, $5000, $10 000, $15 000, and $20 000 goals. The modes in the Pledge axis are in
every box under $400.

http://wileyonlinelibrary.com
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FIGURE 5 One-dimensional modes for the goal dimension for projects with both a goal and a pledge amount of up to $100 000 using a
b1 = 4 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 One-dimensional modes for the pledge dimension for projects with both a goal and a pledge amount of up to $100 000 using a
b1 = 4 [Colour figure can be viewed at wileyonlinelibrary.com]

When using b1 = 3, there are 704 resulting two-dimensional hyper-rectangles; in this case, when using b2 = 9, we
have found 141 two-dimensional modes, as shown in Figure 9. In this case, we can see that the mode for successful
projects with both the highest goal and pledge is located within $100 of $3000 in terms of the goal and $3100 in terms
of the pledge. Up to this point, there are modes of successful projects at every one-dimensional goal mode as such, there
are a significant number of projects that have a goal under $3000 that are successful, yet merely funded. The mode where
the projects have the highest goal and barely miss getting funded is those with a goal of $1500, where there is a mode
with pledges within $100 of the goal. There are, of course, various modes for unfunded projects but none that are close to
funding beyond this goal. Additionally, we can also see that at the $1000 goal level, there are more modes with at points
where the projects funded successfully than modes at the points where the projects did not succeed. Taking only both the
Goal and Pledge as decision variables for creators, they may have better chances of succeeding with smaller goals (under
$1000) whereas losing feasibility with goals beyond $3000.

When using b1 = 3 and b1 = 10, we have found 86 two-dimensional modes, as shown in Figure 10. In this case, we
also see that the mode for successful projects with both the highest goal and pledge is located within $100 of $3000 in
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FIGURE 7 One-dimensional modes for the goal dimension for projects with both a goal and a pledge amount of up to $100 000 using a
b1 = 5 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 One-dimensional modes for the pledge dimension for projects with both a goal and a pledge amount of up to $100 000 using a
b1 = 5 [Colour figure can be viewed at wileyonlinelibrary.com]

terms of the goal and $3100 in terms of the pledge. This time, unlike when b2 = 9, there is no mode with successfully
funded projects at the $1200 one-dimensional goal mode, however, there is still a significant number of projects that have
a goal under $3000 that are successful, yet merely funded. In this case as with b1 = 9, we can also see that at the $1000
goal level, there are more modes with at points where the projects funded successfully than modes at the points where
the projects did not succeed.

When using b1 = 4, there are 190 resulting two-dimensional hyper-rectangles, in this case, when using b2 = 9, we have
found 123 two-dimensional modes, as shown in Figure 11; whereas when b2 = 10, there are only 76 two-dimensional
modes (shown in Figure 12). Comparing these two cases, we find the greatest difference in pledges of less than $400,
where the number of two-dimensional modes drops from 75 when b2 = 9 to 59 when b2 = 10. In the case, when b1 = 5,
there are only 36 resulting two-dimensional hyper-rectangles, and there are two-dimensional modes in every one of them
when b2 = 9, as shown in Figure 13; whereas when b2 = 10, there are only 2 hyper-rectangle in which there are no
modes which are within $100 of the $400 pledge level with goals of $100 and $20 000, respectively, as shown in Figure 14.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


DÍAZ-PACHÓN ET AL. 13

FIGURE 9 Two-dimensional modes for the pledge and goal dimensions for projects with both a goal and a pledge amount of up to
$100 000 using a b1 = 3 and b2 = 9 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 10 Two-dimensional modes for the pledge and goal dimensions for projects with both a goal and a pledge amount of up to
$100 000 using a b1 = 3 and b2 = 10 [Colour figure can be viewed at wileyonlinelibrary.com]

We can see how in the case when b1 = 5, the restriction on the AI that this imposes on the first dimension leads to a very
reduced number of two-dimensional hyper-rectangles where most of them have two-dimensional modes.

8 SIMULATION

This section shows the results for the simulation of 1000 observations in a 150-dimensional space of independent random
variables as shown in Table 1.
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FIGURE 11 Two-dimensional modes for the pledge and goal dimensions for projects with both a goal and a pledge amount of up to
$100 000 using a b1 = 4 and b2 = 9 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 12 Two-dimensional modes for the pledge and goal dimensions for projects with both a goal and a pledge amount of up to
$100 000 using a b1 = 4 and b2 = 10 [Colour figure can be viewed at wileyonlinelibrary.com]

To determine the AI, every dimension was compared against a uniform between the min and the max. For dimension 1,
we took b1 = 1.5 and each r was chosen segmenting the space in 10 intervals of the same length, rounding each value to
the first decimal position. After this first stage, we selected only the following six variables with their respective intervals
and AI:

The purpose of the Index column is to use as nomenclature in the next table. Notice that none of the 100 uniform dis-
tributions were selected, which illustrates the robustness of the procedure. In addition, two intervals of the same variable
were selected. Thus, the analysis will not go beyond 5 (< 6) dimensions, as explained in the third remark of Section 3.
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FIGURE 13 Two-dimensional modes for the pledge and goal dimensions for projects with both a goal and a pledge amount of up to
$100 000 using a b1 = 5 and b2 = 9 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 14 Two-dimensional modes for the pledge and goal dimensions for projects with both a goal and a pledge amount of up to
$100 000 using a b1 = 5 and b2 = 10 [Colour figure can be viewed at wileyonlinelibrary.com]

For the bidimensional analysis, we then select only among the selected intervals in dimension 1, with the variables
defined by the indexes of Table 2. For b2 = 3. The chosen rectangles are shown in Table 3.

In Table 3, we have 3 bidimensional rectangles with AI over 3. To construct the 3-dimensional cubes, we use the rect-
angles of Table 3 crossing them with the intervals of Table 2, and we select those with AI threshold b3 = 4.5; the result is
presented in Table 4.

Again, in Table 4, the Variables column is selected using the indexes in Tables 2 and 3.
Now, with b4 = 6, we perform the 4-dimensional analysis, and it is presented in Table 5.
Finally, we construct the only two possible options in 5 dimensions, making b5 = 7.5, we show in Table 6 that both
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hyper-cubes are selected.

The selection of the b's in each dimension was always arbitrary.

TABLE 1 Description of the random
variables used for simulation

Distribution Variable

Unif [−1, 1] 1–100
N(0, 1) 101, 111, 121, 131, 141
N(0,2) 102, 112, 122, 132, 142
N(0,3) 103, 113, 123, 133, 143
N(0,4) 104, 114, 124, 134, 144
N(0,5) 105, 115, 125, 135, 145
N(0,6) 106, 116, 126, 136, 146
N(0,7) 107, 117, 127, 137, 147
N(0,8) 108, 118, 128, 138, 148
N(0,9) 109, 119, 129, 139, 149

N(0,10) 110, 120, 130, 140, 150

TABLE 2 Selected intervals in one dimension with AI > 1.5

Index Variable Distribution Interval AI

1.1 111 N(0,1) [ −0.2, 0.5] 1.5260
1.2 132 N(0,2) [ −1, 0.5] 1.5558
1.3 138 N(0,8) [ −3, 3] 1.5410
1.4 141 N(0,1) [ −0.2, 0.5] 1.5558
1.5 146 N(0,6) [ −3.6, 1] 1.5310
1.6 146 N(0,6) [1, 5.6] 1.5008

TABLE 3 Selected rectangles
in 2D with AI > 3

Index Variables AI

2.1 1.1 × 1.4 3.1858
2.2 1.3 × 1.5 3.0356
2.3 1.3 × 1.6 3.0356

TABLE 4 Selected cubes in
3D with AI > 4.5

Index Variables AI

3.1 1.1 × 2.2 4.7548
3.2 1.1 × 2.3 4.9068
3.3 1.2 × 2.2 4.8579
3.4 1.4 × 2.2 4.7548

TABLE 5 Selected hyper-cubes
in 4D with AI > 6

Index Variables AI

4.1 1.2 × 3.1 6.6438
4.2 1.2 × 3.2 6.3219
4.3 1.4 × 3.1 6.9068
4.4 1.4 × 3.3 6.6438
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TABLE 6 Selected hyper-cubes
in 5D with AI > 7.5

Index AI

5.1 9.2288
5.2 9.2288

9 DISCUSSION

We have proposed the AIMH algorithm, which consistently finds bumps, whenever they are present, and which informs
of the lack of bumps when these are not there. We have shown an asymptotic result that AIMH is consistent. We have
shown that AIMH is more reliable in high dimensions because information increases logarithmically in the interval (0, 1]
helping to overcome the curse of dimensionality. We have illustrated how it works in a theoretical example, showing that
it finds bumps where PRIM cannot. We have applied it to a real dataset example. We performed a simulation, in which we
also showed how it reduces the dimensionality with no recurrence to principal components. The AIMH algorithm takes
elements from both parametric and nonparametric methods to determine the presence and locations of modes. Further-
more, the AIMH algorithm has distinct advantages over the PRIM algorithm as it is not as computationally expensive in
high dimensions and will always find the modes given that the parameters ri and bi are tuned accurately.
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